JAPAN FORMING MACHINERY ASSOCIATION

Our Vision for the Forming Machine Industry

The ideal shape for the industry in 10 years

Industry Vision

Enhancing International Competitiveness Achieving eco-friendly products that benefit both people and the environment

Fostering a growth cycle for the industry

Ensure profit ⇒ Reinvest in technology, equipment, human resources ⇒ Market differentiation ⇒ Enhanced international competitiveness

> October 2006 Japan Forming Machine Association

> > **P-1 NEXT:** Table of Contents

An analysis of the forming machine industry as it is today and where it needs to go from here to fulfill its potential!!

Chap. 1: An analysis of the forming machine industry today

Chap. 2: Strengths and weaknesses of the forming machine industry

Chap. 3: Biggest priorities for association members

Chap. 4: Customer needs and seeds

Chap. 5: The direction of forming machine technology

Chap. 6: Why eco-products?

Chap. 7: Tasks for the forming machine industry going forward

An industry performing at full potential in 10 years!!

10 years from now

Chapter 1: An analysis of the forming machine industry today

P·3 NEXT: Analysis of member enterprises

The industry today

Forming machinery: member enterprises and

range and numbers of machines produced

1. JFMA consists of 62 members. Around 10 members are large firms with the remainder being medium and small enterprises. The 11 largest firms account for about 80% of total order revenue but have limited areas of expertise, while the medium and small firms have expertise in custom machines for specific customers and produce specialized, automated, and safety-focused equipment incorporating novel technologies.

The industry's main products

Press-type forming machinery: machine press, forging machine, hydraulic press, automated equipment

Sheet metal forming machines

Punching press Press break Shearing machine Bending machine Other

P•5 NEXT: Industry machine order trends

1. Forming machine orders fluctuate about five times as widely as the economic performance index, the industrial output index, and machine industry infrastructure investment. The 20-year average declined over the last few years but finally moved upward in 2005.

P·6 NEXT: Machine tool order trends and comparison

1. The machine tool industry recovered to a level close to its 1990 bubble era peak in 2005 (96.5%) and exceeded bubble era performance in 2006, whereas the forming machine industry was still only at 73.3% of its bubble era peak.

2. Like the machine tool industry, the press machine sector of the forming machine industry has recovered. On the other hand, the sheet metal machine sector is at 45.2%, less than half the bubble era peak. The primary factor in this is thought to be the push by the machine tool industry to promote laser technology.

P•7 NEXT: Order trends: domestic and international comparison

Domestic orders dropped to 1/4 the level of the 1990 peak, as a result of manufacturers moving overseas due to the rising yen and labor costs. By 2005, orders had recovered to more than 50% of their 1990 bubble era peak, but we do not anticipate significant growth beyond this level.
 Overseas orders recorded their highest level ever in 2005, 1.7 times greater than in 1990. Overseas orders are expected to continue growing, which will require stronger international competitiveness.

Forming machine overseas order trends

Overseas exports by country 2005

1. China, North America, Thailand, and India account for 77% of exports.

- 2. China accounts for 40% of press machinery, followed by North America and Thailand. Europe's share is small.
- 3. North America accounts for 30% of sheet metal machinery and Europe 20%, which comes to 50% of the total.

From domestic industry 2005

machine comparison

- **1. Press machinery is heavily weighted to the transportation category.** This category, together with metal components and automobile-related manufacturing, comprises more than 70% which can be attributed to automobile manufacturing. The growth in investment in overseas automobile manufacturing has contributed greatly to the growth of press machine manufacturing.
- 2. User distribution by industry has been largely unchanged over the last 15 years. One issue for growth of our industry is the cultivation of new users (industries) to follow the healthy share taken by the automobile industry.

P-10 NEXT: Analysis of correlation between Japanese automobile trends and industry

The industry today

Correlation between yen totals of press-type forming machine orders and volumes of Japanese automobiles manufactured worldwide

Forming machines: machine presses, forging machines, hydraulic presses, automated equipment

P-11 NEXT: Movement of Japanese auto output by region

The industry today Shift in auto output by global region

Source Through 2006: FOURIN Inc. automobile statistics Year 10 : US JD Power And Associates • 3 to 5% annual growth • Growth mostly in China, Asia • 3% annual growth going forward

While no growth is anticipated for domestic output, increasing output of overseas Japanese auto manufacturers and suppliers, and the establishment of new overseas manufacturing centers are expected to increase press machine demand!!

Japanese auto worldwide manufacturing trends

5 to 7% annual growth
Around 6% annual growth going forward

P-12 NEXT: Chap. 2: Industry strengths, weaknesses

Chapter 2: The forming machine industry: strengths and weaknesses

P-13 NEXT: Industry strengths and weaknesses (global analysis)

1. In response to domestic demand, imported machinery moves in the 8% range. This will not significantly change since yen-dollar fluctuations and the growth of the machine industry in neighboring countries will not impact the industry's novel technology, price competitiveness, and established customer base.

Chapter 3: The most important priorities for association members

P-16 NEXT: The most important priorities for members

Priorities of members of the Japan Forming Machinery Association

(According to a METI survey)

Chapter 4: Industry customer needs and seeds

P-18 NEXT: Industry customer needs and seeds

1) Automobile parts manufacturing needs

Relations between metal press technology and automobiles

Engine parts	Cylinder head cover, manifold, oil pan, fuel	Lightness, complex shape, high strength,	Aluminum alloy, etc. processing technology; molding simulation
	tank, gaskets, injector	excellent durability	technology; high-tension materials processing technology
Rody parts	Rody chargin frame	Lightness complex	High tension materials
body parts	radiatar mill muffler	shane high strangth	responsible to he along
	radiator, grill, muther,	snape, nign strength,	processing technology,
	hinges, pedals, parking	excellent durability	aluminum alloy, etc. processing
	brake lever, hanger		technology; hydro-forming;
	beam assembly		hydraulic counter-pressure
			forming; molding simulation
			technology; complex press
			processing technology;
			springback technology; etc.
Suspension and	Suspension	Lightness, complex	Tailored blanks; molding
brake parts		shape, high strength,	simulation technology;
		excellent durability	aluminum alloy, etc. processing
			technology; etc.
Driving parts	Differential, sprockets,	Lightness, complex	High-performance materials
	clutch hub, AT gear,	shape, high strength,	processing technology; molding
	etc.	excellent durability	simulation technology; etc.
Other	Press processing	Lightness, complex	In addition to the above,
	components used in all	shape, high strength,	technologies enhancing machine
	types of parts	excellent durability	tool durability, material position
			locating technologies, etc.

Source: Mitsubishi Research Institute basic research on strengthening competitiveness of key national industries by improving metal press technology

Data on high-tension material trends: JFE Steel

P-20 NEXT: Home information appliance part needs

2) Home information appliance parts needs

Relations between metal press technology and home information appliances

Dects		Paguirad fasturas	Polovent proce technologies
Faits		Required features	Relevant press technologies
Semiconductors,	Lead frame, Floppy	Miniaturization,	Precision & micro-fabrication
electronic	disk center hub,	structural refinement,	technology; burr-free shearing;
components	shutter	high precision	de-burring technology; scrap
			prevention technology; etc.
Internal parts	Fittings, housing,	Miniaturization,	Precision & micro-fabrication
	switches, relays,	structural refinement,	technology; driveless technology;
	terminals,	high precision,	scrap-free fabrication technology;
	connectors, driving	complex shapes	etc.
	gears, button battery		
	casing, electrodes		
Hard discs, CDs,	HDD suspension	Miniaturization,	Precision & micro-fabrication
MDs, DVDs	gimbal, mount plate,	structural refinement,	technology; burr-free shearing;
	lens pickup	high precision	de-burring technology; complex
	suspension, case,		press processing technology; etc.
	bearings, needle		
Motors	Core plate, case	Miniaturization, high	Precision & micro-fabrication
		precision, automatic	technology; interior lamination
		laminating	technology

Source: Mitsubishi Research Institute basic research on strengthening competitiveness of key national industries by improving metal press technology

Micro-fabricated component parts required by mobile phones (NEDO technical materials)

HDD development trajectory (NEDO technical materials)

- \Rightarrow RF antenna (high-frequency antenna)
- ⇒ RF switch (micro high-speed frequency-conversion switch)
- ⇒ RF resonator, RF condenser (variable condenser and resonator)
- \Rightarrow Tuner, filter
- \Rightarrow Directional microphone

3) Needs of the robotics field

Relations between metal press technology and robotics

Parts		Required features	Relevant press technologies
Surface components, body structure		Miniaturization,	Incremental forming; complex
components		structural refinement,	press processing technology; etc.
		high precision	
Driving components,	Actuator,	Miniaturization,	Micro-forming; complex press
driving structural	sensor, motive	structural refinement,	processing technology; etc.
components,	mechanism	high precision	
manipulators			
Semiconductors,	Sensor-related	Miniaturization,	Precision & micro-processing
electronic	small	structural refinement,	technology; scrap prevention
components	components	high precision	technology; etc.
Fuel cell	Separator	Miniaturization,	Special materials processing
		structural refinement,	technology; precision &
		high precision,	micro-processing technology; etc.
		excellent durability	

Relations between metal press technology and fuel cells

Parts	Required features	Relevant press technologies
Separator	Miniaturization, structural refinement,	processing technology;
	high precision, excellent durability	imprinting technology; precision &
		micro-processing technology; etc.

Fuel cell structure (NEDO technical materials)

Source: Mitsubishi Research Institute basic research on strengthening competitiveness of key national industries by improving metal press technology

Robot structural elements (NEDO technical materials)

P-22 NEXT: Needs of advanced technology products

Source: NEDO technical description

P-23 NEXT: Forming process seeds

Forming process seeds

The five categories

1. Composite forming

- 2. Double-action forming
- 3. Sequential forming
- 4. Hydraulic forming
- 5. Micro-precision forming

1) Composite forming (combining several techniques)

2) Double-action forming

Vibration forming

Characteristics

Forms high-precision, high-value added shapes

•Reduces processing steps and therefore mold and equipment costs

3) Sequential forming

4) Hydraulic forming

1. Characteristics

1) Hydraulics do the molding

- 3D stress (hydrostatic pressure) enhances formability
- •Reduces number of die parts
- 2) Environmentally friendly, emission free process
- 3) Small, medium volume production of multiple parts

2. Methods

Hydro-forming
 Counter-pressure hydraulic forming

Counter-pressure hydraulic forming

Hydraulically applied pressure

5) Micro/precision forming

1. Characteristics

- ★ Growing production of environmentally friendly, compact, and light products
- \star Growing demand for micro-precision parts
- \star Shift from etching and micro-machining techniques

2. Object components

\star Automobile fuel injector nozzle

0.25 mm diameter gear

The dark object in the foreground is a 0.5 mm pencil lead

Organization for Small & Medium Enterprises and Regional Innovation:

P-29 NEXT: Chap **5**: The direction of forming machine technology

Chap. 5: The direction of forming machine technology

P-30 NEXT: The direction of technology development (1)

The direction of technology development (1)

3-1 Forming machine technology that contributes to net-shape forming

1) Ultra-precision, high rigidity

Improves mother machine dynamic geometrical precision (slide and bolster straightness, parallel positioning, angles, bottom dead center, eccentric load, etc.)

2) High-performance with digital control

- Optimal slide motion control
- Optimal press moving part pressure force, speed, and position
- Dynamic geometrical accuracy control
- Elastic deformation, bottom dead center
 position control

Slide geometric precision

Optimal slide motion settings

The direction of technology development (2)

3-2 Forming machine technology that contributes to energy and resource conservation

Press machines

1) Energy efficient running systems and operating mechanisms

- Servo technology for optimal motor drove control
- Reduced friction drag, lubrication free sliding parts
- 2) Compact structure (resource, energy efficient)
- Net shape forming with high-precision, highly rigid press
- Has benefits of reducing workplace size (installation area, height), reducing material and energy costs, and enhancing LCA (life cycle assessment) performance
- In-line forming
- 3) Universal applicability
 - 1 unit performs the functions of a wide variety of press machines

The direction of technology development (3)

3-2 Forming machine technology that contributes to energy and resource conservation

P-33 NEXT: The direction of technology development (4)

The direction of technology development (4)

3-2 Forming machine technology that contributes to energy and resource conservation

Press machine forming system

- 1) Intelligent forming system
- Optimal control system for high output and high energy efficiency
- Full turn key forming system including die
- 24 hour unmanned running system
 Inline output inspection and correction system (robust sensor)
 Die, material replacement system
- 2) Small-medium output of many different parts

Sequential forming compatible

- Reduced die, material replacement time
- Equipment with flexible material and handling
- 3) Highly energy efficient warm and low temperature forming
- Material and die temperature control system including localized heating of hard to work materials

The direction of technology development (5)

3-3 Operator friendly press machines

Focus on smart operation in a comfortable working environment

1) Safety

2) Environment

Low vibration and noise Emission free Maintenance free

- Combines safety and productivity
- Silent forming
- Dry press forming

- Motion, speed control
- No lubricant
- Production management, preventive maintenance, malfunction diagnosis

3) Information Technology for enhanced running efficiency

Reduced set up time	•Automatically set forming criteria and conveying time
	 Automatically replace die and material
Reduced trial time	Forming simulation and press docking
	D.25 NEXT . The direction of technology development

The direction of technology development (6)

3-4 Micro-precision press for advanced technology fields

Creating new demand

- 1) Micro-precision forming
 - •Robot, micro-machine
 - Micro-chemical chip
- 2) Vibration forming

- Vibration forming promoting enhanced formability and dry processing
- 3) Forming hard to work materials

•High-performance materials: inconel, niobium, tantalum, molybdenum, plastics, plastic-metal composites, metal glass

Chapter 6: Why eco products?

P-37 NEXT: The demand for eco-technology is a result of customer needs

The customer's environment and innovation in forming machine industry technology

Why eco-products? Eco-principles and elements

All user needs are tied to eco-products

1. Eco-products are products and services differentiated by a focus on easing environmental burden.

2. Primary elements of eco-products

- 1) Resource and energy efficient
- 2) Reduced waste and toxicity
- 3) Light, durable, enhanced recycling
- 4) Enhanced die life cycle
- 5) Net shape forming

Source: METI Eco Products and Management Strategy Study Group

P·39 NEXT: Forming industry eco-products

Forming industry eco-products

Current eco-products produced by the forming machine industry

Machine name	Eco features	Function	Benefits	Target industry	Global value
C-press	0	Servo motor drive	Energy efficient, low noise, oil efficient	Automobile, metal products	World's only one of its type
Straight side press	0	Servo motor drive	Energy efficient, low noise, oil efficient	Automobile, metal products	World's only one of its type
High-speed press	0	Servo motor drive	Energy efficient, low noise, smaller size resource efficient	Electronic components	
Hydraulic press	0	Hydraulic pump drive servo motor	Energy efficient, low noise	Automobile, metal products	World's only one of its type
Hydro-forming machine	0	D.D.V type hydraulic servo pump	Energy efficient, low noise, oil efficient	Automobile, metal products	
Former	0	Incorporation of high- precision ball bearings, etc.	Energy efficient, low noise, low vibration	Automobile, nut and bolt manufacturers	
Pipe bender	0	D.D.V type hydraulic servo pump	Low noise, energy efficient, oil efficient	Automobile, metal products	
Thread rolling machine	0	Servo motor drive	Low noise, low vibration, oil efficient	Nut and bolt manufacturers	
Punching press	0	Servo motor drive. Regeneration mechanism	Energy efficient, low noise, low vibration	Metal products	
Press brake	0	Hydraulic pump drive servo motor	Energy efficient, oil efficient	Metal products	
Shearing					
Seam welding and forming equipment	0	Versatile form roller	Energy efficient, resource efficient	Automobile, metal products	
Feeder	Th	e use of servo moto	ors in eco-		
Safety equipment products is spreading rapidly!!					

Forming machines order trends: servo press

1. In 2005, growth for the old flywheel machine press was small while servo press machines increased almost five fold to 26% of the total.

2. The shift of sheet metal punching presses to servo machines continues and has exceeded the projection of 80%.
 P•41 NEXT: Eco-products presentation (universal press)

Universal servo press

Only product of its kind

Link-type servo press (tandem press line) **Only product of its kind 1.** Technology features 2. Technological strength and competitiveness Free motion press Crank press processing time Crank (link) press = free motion = fixed motion Market competitiveness Slide Synchronized operation position Monopoly H₂F processing time Adjustable with adjacent **Global market** stroke equipment Minimum Stroke market length Processing Reduced vibration And workpiece-lifting Forming speed when workpieces Bottom dead center Time range stick to mold appropriate to stop time (processing stop time) material Processing while idle High precision due **Technological strength** to bottom dead center stop (composite processing) Noise (dB) 1/100th the 100 105dB noise energy! 90 AC servo motor 83dB 80 Pulley Ball-screw Special link Crank press AC servo press Liner sensor Bolster (Two-way)

P-43 NEXT: Eco-product presentation (high-rigidity press)

Ultra-high precision, high rigidity press

Only product of its kind

- 1. Technology features
- Net shape, high-value added forming
- •"0" clearance slide gear face contact =>ensures high dynamic precision
- Excellent eccentric load performance
- Strong structure for

loads

2. Technological strength and competitiveness

Ultra-high precision composite forming press

Only product of its kind

1. Technology features

- Composite forming with all servo drive
- Multi-point for bearing eccentric loads
- •Reduced processing steps and lower die costs
- ·Ultra-high precision press manufacturing
- Low volume output of multiple product types

2. Technological strength and competitiveness

P-45 NEXT: Eco-product presentation (incremental forming)

Incremental forming machine

Only product of its kind

1. Technology features

From press machine to forming machine

- Flexible no die processing
- Low volume output
- Reduced process time, reduced prototype and

development costs Utilizes information technology

2. Technological strength and competitiveness

P-46 NEXT: Chap. 7: Tasks for the forming machine industry going forward

Chapter 7: Tasks for the forming machine industry going forward

P•47 NEXT: Chap. 7: Tasks for the forming machine industry going forward

Tasks for the forming machine industry going forward

Establish a JAPAN brand and

strengthen international competitiveness

Develop an international standard (internationalize JIS)

- Servo press international standard
- Safety standards
- Develop forming machine eco-products standard

Market strategy

Domestic and overseas PR promotion of industry products (trade fairs, etc.)

Intellectual property strategy

- •Establish intellectual property rights
- Counterfeit goods countermeasures

Industry-academia-government partnerships

- •Effective use of public funding
- •Strengthen partnerships

(10 years from now

Major public measures in support of small and medium businesses

Effectively apply public support for businesses to developing eco-machines

Management Support

- Project promoting strategic IT for small and medium business
- Strategic, high-level core technology support
- Project to support the Transfer of Key Small and Medium Enterprise

Technologies

- Small Business Innovation Research (SBIR) program
- Tax program to strengthen small and medium business technology base
- Program to ensure small and medium business intellectual property rights
- Small and medium business overseas business development support
- Small business equipment capital loan program

Credit support

Credit guarantee program association issues

Financial support

• Tax program to promote small and medium business investment

Support developing company systems

17 key industry sector, including metal press processing, forming, and dies

Software development accumulating and applying the skills of experienced technology, and expertise of experiences engineers

Reduced patent fees and guaranteeing of debt when commercializing newly developed technology

Special tax measures received when conducting testing and research

Support for a portion of the cost of special investigations performed overseas to determined the manufacturing and sales source of counterfeit and pirated product by small and medium business that have suffered intellectual property loss in overseas markets

Free advice from specialists. Provision of information. (Advice on internationalizing business)

No interest loan of half of equipment purchasing costs

When receiving loans from a financial institution, a credit guarantee a credit thereby making it easier to raise capital

Applies special tax measures when acquiring machinery, equipment and other infrastructure and capital assets

P-49 NEXT: Business-academia-government partnerships

P·50 NEXT: An industry at full-potential in 10 years

Japan forming machine industry vision development committee memory

	Name	Company
		(in Japanese alphabetical order)
Chairman	Enomoto Kiyosho	Aida Engineering, Ltd. Director, Special Operating Officer
Member	Nakano Takashi	Aida Engineering, Ltd. Director, Development Head Office Forming Technology Center
Member	Orita Naoki	Amada Co., Ltd. Director
Member	Hachiken Yukiharu	Amino Inc. Sales Consultant
Member	Nishikawa Yoshiaki	Hitachi Zosen Fukui Corporation Tokyo Branch Manager
Member	Komori Ryo	Komatsu Ltd. General Manager, Industrial Machine Head Office Business Department
Member	Murata Tsutomu	Hoden Seimitsu Kako Kenkyusho Cp., Ltd. Development Project Section Processing Development GG Leader
Secretariat	Sato Takehisa Matsumoto Kenji	JFMA Executive Director JFMA Executive Secretary